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ABSTRACT

A review was made of the principal
thermoplastics used to fabricate
high performance composites. Neat
resin tensile and fracture tough-
ness properties, glass transition
temperatures (Tg), crystalline
melt temperatures (Tm) and appro-
ximate processing conditions are
presented. Mechanical properties
of carbon fiber composites made
from many of these thermoplastics
are given, including flexural,
longitudinal tensile, transverse
tensile and in-plane shear proper-
ties as well as short beam shear
and compressive strengths and
interlaminar fracture toughness.
Attractive features and problems
involved in the use of thermoplas-
tics as matrices for high perform-
ance composites are discussed.

INTRODUCTION

The purpose of this paper is to
give a timely review of the

properties of the principal candi-
date thermoplastic (TP) resins
that either have been studied as
composite matrices or are current-
1y undergoing detailed experi-
mental /developmental evaluation as
matrices. This review is
especially appropriate at this
time because of the heavy emphasis
being placed on_the development
and application of TPs as matrices
for fiber reinforced composites on
advanced Air Force weapons systems
such as the Advanced Tactical
Fighter (ATF).

The reader should note that the
data included in this paper were
obtained from a large number of
sources, mostly materials
suppliers. Variations in test
methods from source to source are
inevitable. There is no guarantee
that ASTM procedures were
employed. No attempt was made to
normalize composites data to
constant fiber volume fraction.
Mechanical properties of a parti-
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cular composite matrix will vary
with fiber type and within a fiber
type the date that fiber was
produced. Problems with resin
reproducibility, consistency, and
processability also cause property
variations as new materials mature
in their development from experi-
mental to commercial products.
Consequently, the reader should
bear these caveats in mind in
using this data. Care and sound
judgment should be exercised in
making comparisons between
materials.

GENERAL FEATURES OF
THERMOPLASTIC MATRICES

Three of the most attractive
features offered by TPs as compo-
site matrices are listed in Table
I. The majority of applications
involving aircraft structures
demand that components have
superior damage tolerance and
delamination resistance. Most
high performance TPs offer out-
standing interlaminar fracture
toughness and acceptable post-
impact compression response.

They also offer an even bigger
payoff: the potential of low cost
manufacturing. By taking advan-
tage of the inherent chemical
nature of TP molecules to undergo
thermally-induced flow, shaped
articles can be fabricated at

elevated temperatures by relative-

ly fast processing methods. Con-
sequently, time is profitably ex-
changed for temperature. Prodi-
gious and ambitious programs are
underway throughout the industry
to develop cost-effective process-
ing technology for TP materials.
This effort is partly catalyzed by
progressive Air Force contractual
activities.

Other attractive benefits of TP
composites include indefinite
prepreg life, ability in certain
processes to correct a flawed
part, and the ease with which TP
resins can be quality controlled
during their manufacture. The
latter is due, in part, because of
their less complex formulations
and their inherent stability at
ambient conditions.

The major problems facing TP
composites are outlined in Table
I1. TP prepreg of the quality
generally associated with standard
177°C cure epoxies is difficult to
fabricate. Either hot/melt or
solution methods have to be
employed. Both have their
problems. In the former, tempera-
tures generally above 650°F have
to be employed in order to achieve
a melt viscosity sufficiently low
to wet out 6,000-12,000 filament
carbon fiber tow. Solution pre-
pregging to produce uni-tape is
not an advanced state-of-the-art
process in industry because of the




heavy emphasis in the past with
solventless epoxy coatings and the
strict air quality standards now
in force. Further, many solvents,
especially aprotic organic
liquids, are difficult to remove
during prepreg B-staging or compo-
site fabrication. Solvents also
can offer fire, explosion and
health hazards. These problems
can lead to non-uniform prepreg
that contains misaligned and wavy
fibers, resin-rich and resin-poor
areas, gaps, and poor fiber
wetting. TP prepreg generally has
very little drape, unless powder
impregnated, and no tack, unless
tackifiers, solvents, or
plasticizers are added.

The processing of TP prepreg into
shaped composite structure affords
many problems which are listed in
detail in Table II. One or more
of these difficulties is always
present regardless of the fabrica-
tion technique employed. Edge
buckling, fiber misalignment,
porosity, and part uniformity are
also continuous problems in
thermoforming TP composites.
Finally, the time-dependent
properties of most TP composites
need to be fully characterized so
that creep and fatigue problems
will not become a Pandora's box.

PRINCIPAL HIGH PERFORMANCE
THERMOPLASTICS

Sixteen principal thermoplastics
considered as candidates to
fabricate high performance
composites are shown in Table 11l
along with their supplier, Tg,

Tm (for semi-crystalline poly-
mers), and approximate maximum
processing temperature. The first
five are polyarylene ether or sul-
fide polymers, three of which are
semicrystalline. The next three
are amide or amideimide composi-
tions, followed by four poly-
imides. Three polysulfones and
one polyester éomp1ete the 1ist.
A1l except the J-polymer are
heavily aromatic in character.

The dominant chemical structure of
all polymers except the five
latest compositions (APC-HTX, PXM
8505, PAS-2, Torlon AIX638, and
Avimid K-111) are known. In these
eleven systems, the chemical
flexibilizing groups between
phenyl rings in the backbone
include isopropylidene, carbonyl,
oxygen, sulfur, and sulfone.

It is notable that the average dry
Tg value of the polyimides and
polyamideimides is higher than the
average Tg from any other polymer
class. Three of the five latest
compositions are polyarylene
ethers or sulfides and have much
higher Tg values than their




predecessors (e.g., APC-HTX vs.
PEEK, PAS-2 vs. PPS). The Tg
values were increased in order to
afford improved wet 177°C proper-
ties for ATF applications. Most
of the polyarylene ethers and
polyimides are candidate 177°C/AFT
resins. J-Polymer's Tg is too
Tow. Torlon C is too difficult to
process and the three polysulfones
are too moisture and solvent
sensitive.

Processing temperatures for all 16
polymers are extremely high and
range from 329° to 420°C. Proces-
sing pressures range from 100 to
300 psi for conventional press
moldings while processing times
vary from 1 to 13 hours. Most TPs
use short cycles; Avimid K-III
requires a much longer cure
because chain growth occurs with
the evolution of condensation
volatiles (and residual solvent).

NEAT RESIN PROPERTIES

Table IV 1ists the tensile and
fracture toughness properties of
14 of the principal TPs shown in
Table II1. Values for APC-HTX
were not available and J-Polymer
was omitted because of its Tow
Tg. Although tensile strengths
are extremely notch sensitive,
most of the newer polyarylene
ethers, polysulfides and poly-
imides have very respectable

values in the range from 14 to 17
Ksi.

Tensile moduli should be above 450
Ksi to achieve acceptable compo-
site compression strengths. The
polysulfones fall way below this
value; PXM 8505 and Torlon AIX638
appear to be marginal; most of the
polyimides are well above it. The
high value for PISO; stands out
and helps explain why some of the
P1S02 composite strengths are
outstanding. The Xydar SRT-300 is
a liquid crystalline polyester
whose tensile properties are
outstanding, as would be expected
for an ordered molecule. In this
case, the high value might not
translate into high composite
compression strength; resin
compression modulus might be a
better indicator.

Neat resin fracture energies

(61c) between 5 and 10 in-1b/in’
should give composites with
acceptable interlaminar fracture
toughness. Values above 10
in-1b/in%, while excellent, are
overkill and should not be
obtained at the expense of some
other property such as hot/wet
strength or modulus. A1l the
values listed in Table IV are
either acceptable or excellent.
Notched Izod impact strengths have
not been correlated with composite
interlaminar fracture toughness.




COMPOSITE PROPERTIES

Of the original 16 TPs listed in
Table I1I, composite properties
were obtained for 10 and are given
in Tables V and VI. Flexure
strengths above 250 Ksi are
excellent; only Udel P-1700 and
PPS fall substantially below this
value, the latter probably because
of either poor fiber-resin adhe-
sion or fiber damage. Flexure
moduli listed in Table V are very
good; values should generally be
‘in the 16-19 Msi range.

Short beam shear strengths
generally should be above 14 Ksi,
where most 177°C cure epoxies
fall. The values listed in Table
Y are acceptable but not outstand-
ing and suggest premature failures
on the compressive side of the
specimen. The lower than desired
compressive strengths tend to sub-
stantiate this. Room temperature
compressive strengths for 177°C
cure epoxies average well above
210 Ksi. Compressive strengths
for all the TPs except one are
below 165 Ksi. Yet the resin
moduli for these same materials,
in all1 cases except Udel P-1700,
are sufficiently high (450 to 667
Ksi; Table IV) that one would pre-
dict their composite compression
strengths to be above 200 Ksi.

This suggests that poor fiber
alignment and poor fiber-resin

interfacial adhesion may be
playing a destructive role in
compression response. The low
transverse strengths in all cases
except PEEK-APC-2, which is known
to have excellent fiber-resin
interfacial adhesion, indicates
that the remaining TPs have an
interface problem. Transverse
tensile strengths for epoxies are
generally above 8-10 Ksi and they
exhibit excellent interfacial
adhesion.

It also seems possible that in
some cases fiber damage due to
harsh prepreg fabrication might be
the culprit. The generally poor
longitudinal tensile strengths,
which are a fiber dominated
property, seem to suggest poor
fiber alignment and/or fiber
damage. Values above 280-300 Ksi
are obtained with 177°C cure
epoxies.

Interlaminar fracture toughness
(G¢) values for all the TP
composites are excellent as
expected, based on neat resin
fracture toughness. Values
between 4 and 6 in-1b/in’ are good
and should afford acceptable
post-impact compression strengths.

THERMOSETS VERSUS THERMOPLASTICS
Table VII summarizes the trade-off

in properties between thermosets
and TPs as composite matrices.




177°C Cure epoxies and bismale-
imides can be considered thermo-
sets for purposes of this compari-
son. In this paper, most of the
listed properties have been
discussed in terms of the advan-
tages and deficiencies of TPs; it
is felt TPs have to overcome
certain disadvantages. On the
other hand, it should be noted
that the thermosets have very few
disadvantages and, even then, most
of those are acceptable and can be
dealt with. The one key element
that dominates the trade-off list
and can tip the balance to TPs is
that of fabrication costs.
However, the potential for low
cost mnufacturing of TPs remains
to be demonstrated.

CHALLENGES

Utilization of TP composites will
raise some of the same performance
concerns inherent in toughened
thermosets, except the problems
could be exacerbated by a higher
anticipated use temperature.

These concerns include fatigue and
creep response and load-rate
sensitivity, especially at elevat-
ed temperatures and at high stress
levels. No long-term environment-
al exposure experience even with
small coupons has been obtained,
especially in the presence of
corrosive fluids under load. The
effects of large built-in residual
stresses generated by higher

processing temperatures need to be
understood, especially in larger
structures containing cut-outs,
cavities and built-up areas. Very
little flight experience even with
TP secondary structure exists to
gauge either durability or
maintenance requirements, let
alone damage tolerance. The newer
TP materials are generally more
costly than current generation
epoxies and bismaleimides.
Extensive use of composites will
be tempered by costs and
cost/performance trade-offs. The
total performance characterization
of these promising “"new-improved"
composite matrices (toughened
thermosets as well as TPs) is
incomplete and new, untried
materials will be introduced with
caution.
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TABLE 1

ATTRACTIVE FEATURES OFFERED BY THERMOPLASTICS
AS COMPOSITE MATRICES

@ POTENTIAL OF LOW COST MANUFACTURING
0 INDEFINITE PREPREG STABILITY
0 THERMOFORMING OF FLAT SHEET STOCK
0 REPROCESSING TO CORRECT FLAWS
0 FAST PROCESSING CYCLE

@ HIGH TOUGHNESS (DAMAGE TOLERANCE)

® EASY QUALITY CONTROL

TABLE I

PROBLEMS TO RESOLVE WITH THERMOPLASTIC COMPOSITE MATRICES

® QUALITY PREPREG
0 DIFFICULY TO MAKE
FIBER WETTING
NON-UNIFORMITY
NO TACK
NO DRAPE (UNLESS POWDER IMPREGNATED)
0 PROPER SIZING
® PROCESSING PROBLEMS
0 LAY-UP WITH BOARDY PREPREG
0 COST OF TOOLING
0 BAGGING MATERIALS
0 HIGH TEMPERATURES
0 MODERATE TO HIGH PRESSURES
UNKNOWN FATIGUE PERFORMANCE
UNKNOWN CREEP BEHAVIOR
SOLVENT SENSITIVITY (EXCEPT SEMI-CRYSTALLINE POLYMERS)
CONTROL OF MORPHOLOGY WITH SEMI-CRYSTALLINE POLYMERS

[— 2 — I — I~
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